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Abstract- This paper concerns with the numerical solution of one dimensional Navier-Stokes equation (1D NSE) xxxxt upuuu
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 for

bat
x ep  using Orlowski and Sobczyk transformation (OST). The transformation reduces the NSE into the Burgers equation .We study an

explicit finite difference scheme (FDS) for the numerical solution of the reduced 1D NSE as Burgers equation and study stability condition for the
scheme. We determine the stability condition as the numerical scheme for the reduced model Burgers equation is the same as that of original Burgers
equation. Accuracy and numerical feature of convergence of the explicit scheme is presented by estimating their relative errors. We determine the
computational time to implement numerical scheme for reduced NSE and numerical scheme for original NSE for making a comparison.
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1INTRODUCTION

The Navier-Stokes equations are one of the most
important, beautiful, potentially lucrative governing
equations in fluid dynamics which describe the motion of
fluid substances. The exact solutions for the NSEs can be
obtained are of particular cases. The NSEs are non-linear;
there cannot be a general method to solve analytically the
full  equations.  It  still  remains one of  the open problems in
the mathematical physics. Exact solutions on the other hand
are  very  important  for  many  reasons.  They  provide
reference solutions to verify the accuracies of many
approximate methods. It is thus an important issue to solve
1D NSE analytically as well as numerically.

Numerical simulation of fluid flow has been a major topic
of research for the past few decades. Computational Fluid
Dynamics (CFD) is one of the prominent physical
disciplines that involve the description of the fluid flow in
terms of the mathematical models that include convective
and diffusive transport of some variables. These
mathematical models consist of a set of governing
equations in the form of ordinary and partial differential
equations. Over the years, the FDS is frequently used in
CFD.

Numerical solution of 1D NSE is very important. Analytical
solution of 1D NSE can be obtained for particular form of
pressure gradient, therefore any numerical technique can be
compared with the analytical solution and thus validate the
technique.

In order to understand the non-linear phenomenon of NSE,
one needs to study 1D NSE as a simplification of full NSE.
Nevertheless it incorporates all the main mathematical
features of the NSE. Applying OST we have reduced 1D
NSE  to  viscous  Burgers  equation  and  we  have  solved
viscous Burgers equation analytically by using CHT. So a
number of analytical and numerical studies on 1D NSE and
1D viscous Burgers’ equation have been conducted to solve
the governing equation analytically and numerically
[1],[2],[3],[4],[5],[6],[7],[17].

www.coolissues.com/mathematics/NS [1] studied on
analytic solution of 1D Navier-Stokes  type equation
including and excluding pressure term. Neijib Smaoui [2]
studied numerically the long-time dynamics of a system of
reaction-diffusion equation that arise from the viscous
Burgers equation which is 1D NSE without pressure
gradient.  Hans J. Wospakrik* and Freddy P. Zen+ [3]
presented the solution of the initial value problem of the
corresponding linear heat type equation using the

Feymann-Kac path integral formulation. A. Orlowski and
K. Soczyk [4] presented a transformation to make
inhomogeneous Burgers equation to homogeneous form.
Ronobir C. Sarker, L.S. Andallah and J. Akhter [5] studied
on analytic solution of viscous Burgers equation as an IVP.
Due to the complexity of the analytical solution they
studies explicit and implicit finite difference schemes for
viscous Burgers equation and determined stability
condition for both schemes. T. Yang and J.M. McDonough
[6] presented exact solution to a 1D Burgers’ equation
which exhibits erratic turbulent-like behavior. They
compared time series of the exact solution with physical
experimental data. He also mentioned the governing
equation is analogous to 1D Navier-Stokes equation. They
also proposed a model to provide a good tool for testing
numerical algorithms. J Qian [7] presented numerical
experiments on one dimensional model turbulence. M.A.K.
Azad and L.S. Andallah [17] studied an analytical solution
of 1D Navier-Stokes equation.

In this paper, we present the numerical solution of 1D NSE
by using FDS for the reduced 1D NSE. FDS for original 1D
NSE is studied. We analyze the pressure gradient and
Reynolds number effect in the numerical solution. We
discuss the numerical stability of the FDS for the reduced
NSE. Then we find relative errors to determine the accuracy
of the numerical methods. We determine the computational
time to implement numerical scheme for reduced NSE and
numerical scheme for original NSE for making a
comparison.

2 GOVERNING EQUATION

Using the dimensionless definitions [8], [17]
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We consider the1D NSE in non-dimensional form [1], [6],
[9], [17] as

xxxxt upuuu
Re
1
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Where ),(),,( fo tttbax , .Re VL

Here ),( txu  denotes velocity, subscripts denote partial

differentiation, xp   is  the pressure gradient.  We consider
pressure gradient as a time dependent exponential
decreasing function of the form .)( bat

x etfp
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By considering - bat
x etfp )(  equation (1) reads as

xxxt cutfuuu )( 2

Where batetf )( and .
Re
1

VL
c

In order to determine numerical solution of equation (2)
first  we reduce it  to Burgers equation by using OST. Then
solving Burgers equation numerically we obtain the
numerical solution of 1D NSE (2) by inverse OST.

The OST [4] is defined as
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Substituting these transformed derivatives in equation (2) ,

we get
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Remarks 1: If we take c = 1/Re then we get from equation (4)
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Which is 1D NSE in non-dimensional form after applying

OST.This equation is analogous to non-dimensional form of

1D Burgers’ equation
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3 EXPLICIT FINITE DIFFERENCE SCHEME
FOR REDUCED 1D NSE

   [The derivative of velocity
versus time can be
approximated           with a first

order forward finite difference approximation]

[The derivative of velocity versus
space can be approximated with a

first order centered finite difference approximation]

[The second order derivative of
velocity versus space can be

approximated with a second order centered finite
difference approximation]

Here n represents the velocity at the current time step

whereas (n+1) represents the new (future) velocity. The

subscript i refer to the location. Both n and i are integers.

Substituting these approximations in equation (4),

rearranging of the discretized equation so that all known

quantities   are on the right hand side and the unknown

quantities on the left hand side we get the discretized

version of the Burgers’ equation in non-dimensional form.
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This is the explicit finite difference scheme for the the IBVP.

By using inverse OST, we obtain the explicit finite
difference scheme for 1D NSE as by following page no. 328
in [12]
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4 STABILITY CONDITION FOR THE REDUCED
1D NSE

Here our aim is to investigate the stability condition of the
explicit scheme in order to avoid oscillation and keep the
scheme stable [5], [14], [15].
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(5) can be  written as
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The new solution is a convex combination of the previous

three solutions if
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then the new solution is a convex combination of the
three previous solutions. That is the solution at a new
time-step (n+1) at a spatial node i, is an average of the
solution at the previous time-step at the spatial nodes
i,i+1,i-1. This means that the extreme value of the new
solution is the average of the extreme values of the
previous solution at the three consecutive nodes.

Now applying inverse OST we get from (14)

k
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This is the stability condition for reduced 1D NSE
which has to be satisfied in order to get well-behaved
numerical approximations.

We collect the above result as follows:

Theorem: The stability condition of the reduced1D NSE is
the same as that of 1D viscous Burgers equation.

5 NUMERICAL IMPLEMENTATION OF THE
EXPLICIT FINITE DIFFERENCE SCHEME

To implement our scheme, we consider the spatial domain
[0,2 ] and the maximum time step T=9;

We consider the initial condition

u(x,0)=u0(x)=sin(x)

and the homogeneous Dirichlet boundary condition

batb e
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For c = 0.1, we get the stability condition
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And the stability condition becomes
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If we take m =50 and n = 450 then we get

20326820.29608813
2

,30717960.06283185
2

2
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and this values of h and k satisfy our stability condition.
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Fig. 1.  Solution of 1D NSE using explicit
finite difference scheme at different time
steps.
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Fig.  1  indicates  that  our  solution  profile  in  three  different
time steps agrees with the convection-diffusion type
qualitative behavior. That is, the solution profile is moving
forward (convection) and smears out (diffusion) as well.

M.A.K. Azad, L.S. Andallah [17] derived an analytical
solution for 1D NSE as
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 Here  it  is  very  important  that  for  very  small  t,  both

numerator and denominator of “ (16)” get very closed to

zero and thus very difficult to handle numerically. Again,

for very small c, both numerator and denominator of “(16)”

get  very  closed  to  zero  or  infinity  which  becomes  very

difficult to handle.

Fig. 2, fig.3&fig.4 show the comparison of analytical and
numerical solution of 1D Navier-Stokes equation in the
domain T=[0,3],x=[0,2 ].

We have compared the solution graphically from the
following figure taking L=2 , T=3.

Fig.2, fig.3, fig.4 show a very good agreement between
analytical and numerical solution at Re=5, Re=10&Re=20
respectively.

6 RELATIVE ERROR ESTIMATION FOR
REDUCED 1D NSE

We compute the relative error in L1-norm defined by

1
1

e

ne

u
uu

e
.

Where ue is the exact solution and un is the numerical
solution computed for the finite difference scheme.
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Fig. 4. Comparison of numerical and
analytical solution of 1D NSE.
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Fig. 2. Comparison of numerical and analytical
solution of 1D NSE.
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Fig. 3. Comparison of numerical and
analytical solution of 1D NSE.
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Here it is important that for 0<t<0.18 analytical solution is
very difficult to handle. But numerical solution using finite
difference scheme is easy. So, for first three time steps
relative errors are very high. But 0.18<t<9 relative errors
level are quite satisfactory.

After computation of relative errors, we show the
convergence  of  the  scheme  by  plotting  relative  errors  for
different pairs of (h,k).We perform our numerical scheme
for c = 0.2 up to time t = 12 in spatial domain [0,2 ] and
taking  m =40, n = 300 we get the stability condition and we
get  relative errors which are shown in fig. 6.

Fig. 6.  Shows that the relative error in this case remains
below 0.090 and above 0.00058 .The relative errors are quite
acceptable. Here it is important that for 0<t<0.12 analytical
solution is very difficult to handle. But numerical solution
using finite difference scheme is easy. But 0.16<t<12 relative
errors level are quite satisfactory.

From fig.7. it is observed that relative error is  from 0.0707
to 0.0913 at t=0.12 which is high. It is happened for small
value of t. For 0.12<t<1 relative errors range is from 0.0493
to 0.0645 which seems somewhat high. But for 1<t<2 this
range is from 0.0234 to 0.0334. When 2<t<3 the observed
range is from 0.0136 to 0.0179  which is acceptable. It is also
studied that in range 3<t<6 the relative errors remain from
0.0044 to 0.0203 which is quite acceptable.
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Fig. 7. Relative errors and convergence for the FDS for
the reduced 1D NSE.
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Fig. 8. Relative errors and convergence for the
FDS for the reduced 1D NSE.
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From fig.8. it is observed that relative error is  from 0.0532
to 0.0782 at t=0.18 which is somewhat high. It is happened
for small value of t. For 0.18<t<1 relative errors range is
from 0.0396 to 0.0772.  But for 1<t<2 this range is from
0.0221 to 0.0548. When 2<t<3 the observed range is from
0.0125 to 0.0342 which is acceptable. It is also studied that
in range 3<t<9 the relative errors remain from 0.0048 to
0.0180 which is quite acceptable.

Fig.9. shows that keeping spatial steps fixed if time steps
increase then relative errors decrease but very close to each
other. So, in this case it seems relative errors coincide to
each other for each pair (m,n). It is also observed that for
t<1, relative errors are somewhat high. But for 2<t<9
estimated relative errors are quite acceptable. So, our
findings in this case are n=200 are good enough to restrict
the error due to the time discretization.

From fig.10.  it is clear that keeping no. of time steps fixed
and increasing no. of spatial steps relative errors are
decreasing.
After  computation  of  relative  errors,  we  show  the
convergence of each scheme by plotting relative errors for
different pairs  of  (h,k).  We perform our numerical  scheme
for c = 0.1, 0.2, 0.2, c=0.1 up to time t = 9, 12,6,12 respectively
in spatial domain [0,2 ] and taking different spatial steps
and time steps we get the stability condition. From fig. 7, 8,
9 and 10 we observe that the calculated relative errors are
quite acceptable. We see that relative errors are decreasing
with respect to the smaller discretization parameters h and
k which show the convergence of the explicit finite
difference scheme.

7 PRESSURE GRADIENT EFFECT ANALYSIS
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Fig. 9. Relative errors and convergence for  the FDS.
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Fig. 10. Relative errors and convergence for the FDS.
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Fig.11.  Numerical solution of 1D NSE.
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Fig. 12.  Numerical solution of 1D NSE.
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Comparing  above  figures  we  conclude  that  pressure

gradient term has an important effect on the solution of 1D

NSE. From the above fig. 11, fig. 12, fig. 13 we observe that

an increase in the pressure gradient resulted an increase in

the velocity of the fluid. Also a decrease in the pressure

gradient resulted a decrease in the velocity of the fluid

which describes a phenomenon in which the pressure of a

fluid changes with a change in the velocity of the fluid. This

qualitative behavior agrees with the qualitative behavior

obtained from the numerical evaluation of analytical

solution which is shown by M.A.K. Azad and L.S.

Andallah in [17].

8 REYNOLDS NUMBER EFFECT ANALYSIS

From fig.14, fig.15 we observe that our initial date is

smooth  and  c  is  very  small  i.e.  Reynolds  number  is  very

large, then before the wave begins to break and shock

forms. This qualitative behavior agrees with the qualitative

behavior obtained from the numerical evaluation of

analytical solution which is shown by M.A.K. Azad and

L.S.  Andallah in [17].

9 FINITE DIFFERENCE SCHEME FOR THE
ORIGINAL 1D NSE

Substituting these approximations, we obtain
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Fig. 14. A numerical solution of 1D NSE.
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Fig. 15. A numerical solution of 1D NSE.
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Fig.13. Numerical solution of 1D NSE.
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the other three previous solutions. So numerical experiment

is required for the stability condition of this scheme.

10 COMPARISON OF EFFECTIVENESS OF
THE SCHEMES

We perform our numerical scheme for Re =10 up to time t =
9 in spatial domain [0,2 ] and taking  different spatial and
time steps which satisfy stability condition and we get
computational time by using MAT LAB program in HP
core i5 model laptop which  are tabulated in the following
table : Table 1

No.
of

spatia
l

nodes
(m)

No.
of

time
step
s(n)

Numerica
l scheme

for
original

1D
NSE

Numerica
l scheme

for
reduced

1D
NSE

Percentag
e of

saving
time (%)

70 350 0.011229 s 0.010485 s 6.625701
80 400 0.012501 s 0.010969 s 12.25502
90 450 0.012758 s 0.011463 s 10.150494
100 500 0.013844 s 0.012248 s 10.529788
110 550 0.015157 s 0.013185 s 13.010490

Table 1 show that both schemes are very fast. The speed for
implementing the numerical scheme for reduced NSE is
faster than the speed for implanting the numerical scheme
for the original NSE. So, numerical scheme for reduced NSE
is more efficient than numerical scheme for original NSE

11 CONCLUSIONS

In this paper, we have presented the numerical solution of
1D NSE by using finite difference scheme for the reduced
1D NSE. Computational results obtained from numerical
solution  of  1D  NSE  by  implementing  computer  program
we have found some qualitative behaviors which agree
with the qualitative behaviors obtained from analytical
solution.
 The  stability  condition  of  the  reduced  model  Burgers
equation  is  the  same  as  that  of  the  original  Burgers
equation. However, the finite difference scheme for the
original 1D NSE requires much smaller time step size
selection for the stability condition. Our numerical
experiment shows that time step size is 68.1691 % smaller
than the reduced model. We have computed relative errors
which show a good rate of convergence of the numerical
scheme. Our experiment also reveals that numerical scheme
for the reduced NSE is faster than direct numerical scheme

for original 1D NSE. Thus we conclude that the finite
difference scheme for reduced model is much more efficient
than the finite difference scheme for the original NSE.

REFERENCES:

[1] www.coolissues.com/mahematics/NS, “Navier-Stokes
type equations and their explicit solution”.

 [2] Neijib Smaoui, “Analyzing the dynamics of the forced
Burgers equation.”

[3] Hans J. Wospakrik* and Freddy P. Zen+ ,  “
Inhomogeneous Burgers equation and the Feymann-Kac
path integral.”9812014v1,1998.

[4] A. Orlowski and K. Soczyk, Rep. Math. Phys. 27(1989)
59,

 [5] Ronobir C. Sarker, L.S. Andallah and J. Akhter, “ Finite
difference scheme for Burgers equation.” J.J Math and Math
Sci.,Vol 26,2011,15-28.

 [6] T. Yang and J.M. McDonough, “ Exact solution to
Burgers equation exhibiting erratic turbulent –like
behavior.” aiaa04.pdf.

  [7] J Qian, “ Numerical experiments on dimensional model
turbulence.”Phys. Fluids 27,          19571965,1984.

[8] Nursalawati Rusli et. al. , “ Numerical computation of a
two dimensional Navier-Stokes equations using an
improved finite difference method”. Matematika, Vol.
27,2011, Number 1,1-9.

[9] Thibault Rieutord, “Navier-Stokes 1D model for blood
flow simulations in a vascular network,September 3, 2010.

[10] Aslak Tveito, Ragnar Winter, “ Introduction to partial
differential equations: A computational Approach.”
Springer, 2001, 328-329.

[11] D.T. Jeng and W.C. Meecham, “Solution of forced

Burgers’ equation,” Phys. Fluids 15, 504-506, 1972.

[12] Randall J. Leveque, “ Numerical Methods for

conservation laws”, second edition-1992,Springer.

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 
ISSN 2229-5518 881

IJSER © 2014 
http://www.ijser.org

IJSER



[13] Bnoi^t Desjardins and Chi-Kun, “ A survey of the

compressible Navier-Stokes equations,” Taiwaneese journal

of Mathematics,vol. 3, No.2,pp. 123-137,June-1999.

[14] Md. Abdul Awal Sheikh, “ Analytical and numerical

solution of Burgers’ Equation”, M. Phil thesis,Session:2008-

2009.

[15] L.S. Andallah, “Analytical & Numerical methods for

PDE” , Lecture notes for Ph. D. course work, Department of

Mathematics,Jahangirnagar University.

[17] M.A.K. Azad, L.S. Andallah, “ An Analytical Solution

of 1D Navier-Stokes Equation.” IJSER, Volume 5, Issue 2,

pp. 1342-1348,February’2014.

[18] Todd Young and Martin J. Mohlenkamp, “Introduction

to numerical methods and Matlab Programming for

Engineers”,Department of Mathematics,Ohio

University,August 10,2012.

—————————— ————————
Muhammad Abul Kalam Azad, Ph. D student, Department of Mathematics,

JahangirnagarUniversity,Savar,Dhaka,Bangladesh, Email:akazad2034@gmail.com

Professor Dr.. Laek Sazzad Andallah, Department of Mathematics, Jahangirnagar University,

Savar,Dhaka,Bangladesh,Email:andallahls@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 
ISSN 2229-5518 882

IJSER © 2014 
http://www.ijser.org

IJSER




